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Abstract. The self-avoiding walk (SAW) exponents Y and y are computed over a range of 
dimensions (1 e d < m) from exacf expressions for the mean-square end-to-end distance 
(Rt.) and the partition function Q. of SAWS having a limited number of steps, n s 11. SAW 
exponents ( Y, y) for arbifrary dimension d are estimated by applying standard extrapolation 
techniques to our direct enumeration data which has been analytically continued to variable 
dimension. Exponent estimates obtained from continuum theories of self-avoiding paths 
are compared with the SAW calculations. 

1. Introduction 

It is well known that the geometrical properties of self-avoiding and random walks 
exhibit a strong dependence on spatial dimensionality d and that the ‘universal’ critical 
behaviour in many systems undergoing phase transitions is intimately related to the 
geometrical properties of these walks. Specifically, we mention Symanzik‘s formulation 
[l] of 44 6eld theory in terms of a ‘gas’ of interacting Brownian paths, Domb’s 
calculation of O(m) lattice spin model properties in terms of interacting SAWS 121 and 
De Gennes’ discovery of an exact relation between the m +O limit of the O( m) model 
and SAWS [3]. The accurate characterization of the geometrical properties of SAWS is 
consequently a problem with many practical physical applications, besides the rather 
obvious applications to the solution properties of polymers [4,5]. 

Many analytical and numerical studies of self-avoiding walks with nearest- 
neighbour interactions on a variety of lattices have appeared since the pioneering 
studies byOrr[6] and Fisher e ta l [7] .  Rec&t works [SI often emphasize the calculation 
of the SAW ‘critical indices’ U and y, and the ‘connectivity constant’ p. Rigorous results 
include a proof of the existence [9,10] of f i  and the relation [ l l ] ,  y=2v=1 ,  d s 5 .  
Conformal invariance calculations in d = 2  suggest the exact results [12] 2v =$ and 

The study of lattice SAW models has developed in parallel to analytic theories of 
self-avoiding paths based on O( m + 0) field theoretic methods [3] or direct formulations 
in terms of Wiener path-integration [4,5,13]. Application of the perturbative Wilson- 
Fisher e-expansion method has provided SAW information that is complementary to 
lattice model studies [5,13]. Simple dimensional analysis in the continuum theory of 
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self-avoiding paths indicates the singular role of d = 4 dimensions and the E = 4- d 
perturbation theory leads to apparently accurate and unique estimates of the exponents 
(7, U) and dimensionless amplitude ratios [5,13,14]. These formal calculations provide 
support for the hypothesis of ‘universality’ [existence and uniqueness of exponents 
( y ,  U)] which is conventionally assumed in the numerical interpretation of lattice SAW 
data. 

Given the success of continuum model calculations for the geometrical properties 
of self-avoiding paths as a function of d, there have been remarkably few lattice studies 
which directly treat the spatial dimension as variable in the investigation of large scale 
geometrical properties of SAWS. However, there are formal l/d expansion calculations 
of the ‘non-universal’ constant p and some other geometrical properties of SAWS 
[15,16]. There have also been some interesting studies of SAWS on ‘fractal’ lattices 
[17,18], which are thought to roughly interpolate between regular lattices of integer 
dimension. SAWS on percolation clusters have also been considered [ 19,201 as idealized 
models of polymers in a disordered environment. Our present analytical continuation 
of lattice enumeration data to continuous d indicates that the idea of relating fractal 
lattices to regular lattices in non-integer dimensions has some heuristic value, even if 
a quantitative relation is difficult to establish. Le Guillou and Zinn-Justin similarly 
examine the dat ion between Ising model critical exponents for fractal lattices and 
O ( m  = 1) Borel resummation predictions in variable dimension [21]. 

Two previous papers [22,23] employ direct enumeration data in variable dimension 
( d  = 1,2 , .  . .) to obtain exact expressions for the partition function C. and the mean- 
square end-to-end distance (R:) for nearest-neighbour interacting SAWS in continuously 
variable dimension. These initial calculations are limited to rather modest walk lengths 
(n S l l ) ,  but improved computer resources and more efficient coding should allow a 
systematic extension to longer ‘chains‘. 

Abe [24] and Baker and Benofy 1251 discuss a similar extension of the k ing  model 
to continuous spatial dimension d. Baker and Benofy show that this analytic continu- 
ation is ‘equivalent’ to the Wilson-Fisher &-analytic continuation [3,25]. However, 
they do not investigate the variation of the Ising exponents (y ,  U) with dimension. Our 
previous calculations 122,231 of C. and (R;) for SAWS in variable dimension are used 
here in conjunction with standard ratio and approximant methods to evaluate the 
exponents y and U. These estimates are then compared with predictions of RO E- 

expansion, Borel resummation and mory (self-consistent field) calculations in non- 
integer dimensions [3]. Thus, self-avoiding lattice walks in d =3.99 dimensions [3] 
can be investigated by our methods as a model without mathematical ambiguity. The 
advantage of the present non-perturbative calculations is that the results are not 
restricted to dimensions ‘near’ four. 
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2. Exponents Y and y as a function of dimension 

Om 161 initiated exact SAW enumeration for walk lengths n long enough to yield 
non-trivial estimates of their statistical properties, and Fisher et a! [7] significantly 
extended this direct approach. In these pioneering studies OR [6]  introduced the basic 
notion of a ‘connectivity constant’ p (free energy per step) and Fisher et a1 [7] defined 
‘critical exponents’ for SAWS. Rigorous calculations later established these ideas [9-121. 
Our recent work provides a further extension of these classical enumeration studies 
to include variable spatial dimensions [22, 231. 
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We begin with the direct enumeration expressions for C. and (R:) of nearest- 
neighbour interacting SAWS with n < 1 1 ,  as developed in previous papers [22, 231. C. 
is defined as a weighted sum, 

C"(4 q)= c c,,.rl- ?=eW w = - E f  ksT (1) 
,=0 

where Cn., is the number of SAW configurations which have m-nearest-neighbour 
contacts, q is a Boltzmann factor for a nearest-neighbour interaction with energy E, 

and kBT defines the energy units. The zero energy state corresponds to an equal 
weighting of all SAWS (q = 1). More compact SAW configurations are weighted for walks 
with attractive interactions, q > 1. The sum in ( 1 )  extends to the maximum number of 
nearest-neighbour contacts [ 6 , 7 ]  for a SAW on a hypercubic lattice. (R:) is likewise 
represented as a weighted sum, 

where rn., and C,, for n S 11 are tabulated in [22]  and [23] respectively, for integer 
dimensions in the range 2 r d < 6 .  The coefficients rn., and C,, are expressed as 
polynomials in the spatial dimension [22,23],  so that the lattice enumeration data can 
be extended formally to continuously variable dimension. This analytic continuation 
is equivalent to that employed in continuum e-expansion calculations [25].  

The estimation of the exponents v and y requires some knowledge of the limiting 
variation of ( R i )  and C.. Formal RG calculations and numerical evidence suggest the 
asymptotic behaviour [26-281, 

(R:) = ARn2'[1 + B R / n  + CRn-A + . . .] 
C,, =A,nY- 'pn[ l+  B J n +  C,n-A+. . .I. 

( 3 )  

(4) 

Our lattice model estimates of v and ypresume the validity of ( 3 )  and (4). Formal 
calculations in d = 2 indicate 1121, 

2 v ( d = 2 ) = 1 . 5  y ( d  = 2 )  =$ ( 5 )  
in consistency with the scaling assumed in ( 3 )  and (4). There is no rigorous proof of 
the existence and uniqueness of the exponents (y,  v )  helow d = 5 except for d = 1. 

Numerical estimates of SAW exponents v and y are obtained by applying some 
standard variations on the ratio method [ 7 , 8 , 3 0 ] .  Ishinabe discusses these methods 
in a detailed assessment of exact enumeration estimates of SAW exponents for d = 2 
and d = 3  1311. Ratio extrapolant methods are directly applied to our analytic 
expressions for variable dimension as in former analyses restricted to integer 
dimensions. We first estimate Y and y following a conventional ratio metbod with 
associated Neville tables. C, and A in ( 3 )  are determined for this trial v as discussed 
in [31].  (This procedure was ineffective for (R: )  in d = 2.75 and 4, and for C, in all 
d )  We then obtain an improved estimate of v by repeating the first process using the 
transformed series [ 3 1 ]  RZ = (R;)/{l+ CRn-"}. The analytic corrections to scaling BR 
and B. in ( 3 )  and (4) can be calculated [22,23] by exploiting our previous l / d  
expansions of (R:) and C.. Inclusion of these terms is restricted to the range 4 < d S 6 
since this is the range where such corrections are expected from dimensional analysis 
to be comparable to the non-analytic corrections and l / d  expansions should be 
applicable inthis range. We also estimate v and y using the transformed series including 
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only analytic corrections C: = C,/[ 1 + B J n ] .  Estimates of v and y with or without 
such corrections are also presented in table 1. The dimensional dependence of the 
exponent A in equations (3) and (4) will be discussed elsewhere along with the 
dimension and interaction dependence of p. 
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(A) The exponent U 
Figure 1 exhibits a regular decrease of our lattice model estimates of v in the range 
2 < d < 4, while U for d > 4 approaches the constant value 5. This figure suggests that 
U is piecewise analylic in the intervals 2 <  d <4 and 4 < d  <W. The spherical model 
correlation length exponent vs and the susceptibility exponent y. are known to be 

Table 1 

Ratio Method Estimates of Y 

d no wrrection A comction ( A + l l d )  correction 

2 t  0.74901 0.0014 0.7505 10.0010 (0) . ~ ,  
2.75 0.63t0.003 (0) 
3% 0.5920 *0.0004 0.589810.0002 (0) 
3.25 0.565 t 0.008 0.55510.005 (0)' 
3.5 0.545 * 0.005 0.53510.005 (0) 
48 
4.5 

. ,  
0.500*01)04 (0) 
0.514t0.002 0,51010.0015 (0) 0.505i0.0015 (0) 

5 0.507*0.001 0.5040t0.0006 Coj 0.~006~0.ooo6(0) 
5.5 0.5040 tO.0008 0.5001 tO.0005 (0) 0.4997*0.0003 (0) 

6 0.5006 *0.0006 (0) 05002t0.0005 (0) 
6.5 0.499610.0005 (0) 0.499510.WO4 (0) 
7 0.4993*0.0003 (0) 0.4993tO.0005 (0) 

l l d  correction 

Ratio Method Estimates of y 

d no correction I l d  correction 

2t 
2.75 
3P 
3.25 
3.50 
3.75 

4.25 
411 

4.5 
5 
5.5 
6 
6.5 
7 

1.342*0.002 (0) 
1.23t0.07(0) 

1.162t0.006 (0) 
1.11t0.015 (0) 
1.0710.015 (0) 
1.05to.015 (0) 
1.0010.015 (0) 

1.04010.008 (0) 
1.035t0.005 (0) 
1.0251.0.005 (0) 
1.016*0.005 (0) 

1.003 10.004 (0) 
1.002+0.004 (0) 

1.007*0.005 (0) 

1.055+0.008 (0) 
1.0328 *0.005 (0) 
1.0104t 0.005 (0) 
1.0008*0.005 (0) 

t n r 2 2  [SO]. 
t: n S 14, unpublished direct enumeration data 
B Includes log correction 6 =A as indicated in [43,44]. 
i l n s l 3 , 6 = i [ 4 4 ] .  
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piecewise analytic [32], 

ys = 2v,= 2/(2- E )  ~ = 4 - d  2 < d < 4  (60) 

y. = 2v, = 1 d > 4  (66) 

and our suggestion of piecewise analytic SAW exponents is further supported by Hara 
and Slade's proof [ll] that the SAW exponents take their mean-Eeld values for d > 5, 

y = 2 v = 1  d 3 5 .  (7) 

Flory self-consistent Eeld (SCF) calculations [33-361 also yield a piecewise analytic 
variation of v with dimension, 

(sa) vp(1 S d <4) =3 / (d  +2) E 1/(2- &/3) 

d z 4 .  (8b) 

The formal RG E-expansion [3, SI about d = 4  (which is probably a point of non- 
analyticity) indicates that 2v has the asymptotic expansion, 

-1 
F - 2  

2 v , , ( d S 4 4 ) - 1 + ( & / 8 ) + ~ ( ~ / 8 ) ~ + 0 ( ~ ~ ) .  (9)  

Second order in E has been suggested as the optimal order of truncation for polymer 
excluded volume [37], so that the estimate of 2v should become worse upon inclusion 
of higher order terms in E in (9). Proof that the series (9) is of the Stietjes-type would 
rigorously justify the application of the optimal order truncation criterion [37,38]. 
Bore1 resummation and other resummation methods [29,39-411 provide more precise 
estimates of v for the physically interesting case d = 3 and these estimates are mentioned 
below in our discussion of improved estimates of v as a function of dimension. 

Comparison of the Flory SCF calculation (8) and lattice model estimates of U in 
figure 1 yield good qualitative agreement over the entire range of d. The Flory SCF 
calculation is exact for d = 1 and d > 5 [ l l ]  and equation ( 8 )  is thought to be exact 
in d = 2 [12]. However, equation (8) appears to deviate systematically from the lattice 
model estimates for d =4-. Such a deviation is expected from RG E-expansion theory 
which should have its greatest accuracy for E = O+. Indeed, the RG &-expansion for v 
agrees rather well near d = 4  with the lattice model calculations in figure 1. Equations 
(8) and (9) imply the RG theory yields a slower variation of v with dimension than 
the Flory SCF theory. This is manifest from the limits, 

lim (2vRc - I)/+ =$ +EE/2 ( loa)  
+-O+ 

The limit ( loa)  determines the exponent 8 goveming the logarithmic corrections at 
the critical dimension [43,44], E+O+,  

(R:) = A,n[ln nI8 a=; n+m. (10c) 

The log correction in (lOc) is included in the computation of v for d = 4  in table 1. 
In conclusion, the Flory SCF calculation agrees better with our lattice SAW calculations 
in low dimensions 1 S d < 2 while the RG e-expansion calculations agree better for 
dimensions near d = 4. Evidence supporting a critical dimension d. = 4 is clearly 
exhibited by figure 1, which accords with previous findings by Abe [24] for the Ising 
model on a hypercuhic lattice. 
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I 
1 2 3 4 5 6 

d 

Figore 1. Exponent Y as a function of dimension. Solid c u ~ e  indicates equation (11)  and 
dashed curve the Flow estimate equation (8). 13 data includes analytic correction to scaling 
while 0 data does not include such comtions.  See table 1 and text. 

An improved estimate of v over the range 1s d <4 can be obtained by requiring 
the approximant for U to be consistent with established values in d = 1 and 2 and with 
RG results for dimensions near d = 4. A simple Lagrange interpolation polynomial 
combining this information is given by 

45/(2v - 1) =4[1-2+/3+ &/6 ]  l s d < 4  (1la)  

y = I  2 d 3 4 .  (1lb) 
Interestingly, equation (1 1) produces v(d = 3) =$= 0.5882-in excellent agreement 
with Bore1 resummation estimates, 

u(d=3)=0.5880~0.001 [21,39] 

v(d =3)  =0.5885*0.0025 [40] 

v(d=3)=0.5886 [41]. 

Direct enumeration [34], Monte Carlo lattice SAW data [42] and experimental data 
for real polymer chains in good solvents [5,13,39] are consistent with U close to 0.59 
in d = 3. Such a value of v also agrees with the second order &-expansion calculation 
of U (see equation (9)) uRG(d = 3) =0.592. The &-expansion estimate of v, however, 
degrades at higher order [37]. 

Equation (11) agrees very well with the lattice computations presented in figure 1 
for 1 < d s 4 .  However, our calculations for 4 <  d s6 tend to be slightly higher than 
U = $ .  Inclusion of the analytic correction to scaling ER (see equation 3)  produces 
exponent estimates closer to v =4. Further study of corrections to scaling in this range 
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of dimensions is needed for a more accurate estimation of exponents. The situation 
of d slightly above d = 4  seem to be very delicate. 

(B) The exponent y 
The SAW exponent y displays a more complicated dependence on dimension than the 
exponent v. Figure 2 shows that y - 2v in the range 3 S d < 4, but y passes through a 
maximum near d = 2 and decreases to y = 1 in d = 1. We are unaware of a previous 
discussion of this maximum. However, in retrospect, the non-monotone variation of 
y is obvious. When d = 1, it trivially follows that y = 1 since a fully extended chain 
has a number of possible configurations which is independent of chain length. Hara 
and Slade [ 111 prove that y = 1 in high dimensions d 5 and RG theory indicates that 
y >  1 for d < 4  and E = O +  [3,5]. Thus, if y is assumed to vary continuously with 
dimension then y must possess at least one finite maximum in the range 1 S d <4. 

1 " h ................................ 'c 

I 
1 2 3 4 5 6 

d 

Ficure 2 Exponent y as function of dimension. Solid curve from equation (14) and the 
long and short dashed w e s  indicate the RG and Flory-type predictions, respectively. 0 
and 0 have same meaning as in figure 1. 

Unfortunately, it is rather difficult to locate precisely the position of the maximum 
in y from our calculations. The maximum occurs somewhere in the vicinity of d = 2. 
Ratio method extrapolations of the SAW exponents for our rather short chains tend to 
become rather erratic in the interval(l.5 < d < 2.5), except for d = 2. We avoid including 
non-integer dimension exponent estimates in this range until a more appropriate 
extrapolation method is developed. Baker and Benofy [25] suggest that the analytical 
continuation of lattice model computations to non-integer dimensions inherently 
involves a kind of 'frustration' in the interactions, and they even suggest that the radii 
of convergence of the high temperature (specifically Ising) series could shrink to zero 
for non-integer dimensions! Thus, the erratic extrapolations of y and v in the range 
1.5 < d < 2.5 deserve careful examination. No difficulties are encountered in our 
extrapolations for the range 3 S d and for d = 2. 
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RG &-expansion calculations of the SAW exponent y give no indication of a 
maximum, 

yRo- 1 + ~ / 8 + ~ ( & / 8 ) ~ +  O w )  &==O+. (12a) 

Such a maximum is also absent in the recent Flory-Pietronero [42] calculation of y, 

yFp = 2vF = 6/(d + 2) l q d C 4 .  (126) 

For completeness we note the limit, 

Iim(yRG-1)/+ =$ 
--a+ 

so that the logarithmic corrections to scaling in C. at the critical dimension ( E  =0) 
have the form [43,44], 

C. -A,p“(ln II)’’~ n+m. (13) 
Previous SCF calculations by Kosmas and Freed [36] yield y (SCF, d = 3) = 1.2 which 
is consistent with (126) when fluctuation corrections to the SCF potential are included 
in the theory. They note, however, that higher order calculations could alter this 
conclusion. Evidently, the ‘Flory theory’ yFpis not accurate in low dimensions. Equation 
(126) deviates by 50% from the exact result y(d = 1)  = 1, The deficiency of (12b) is 
important in relation to recent studies OfSAWs on fractal lattices [ 17,181 and percolation 
clusters [ 19,201 (see below). 

Given the qualitative inaccuracy of equations (12a) and (126) it is useful to develop 
a more accurate estimate of y for certain applications. Douglas presents an exact 
geometrical interpretation of y in a simpler ‘excluded volume’ problem involving 
Brownian chains in the proximity of impenetrable boundaries [45]. A heuristic 
extension of these geometrical arguments, to be presented elsewhere, indicates a simple 
approximation for the SAW exponent y, 

y zz (d/2)(3 v - 1).  (14) 

Equation (14) is exact in d = 1, is consistent with RG theory to order E [see equation 
( I ~ U ) ]  and is reasonably accurate [21,39,40] for d = 3 where v = 0.59 implies y = 1.16. 
However, there is a 7% discrepancy between (14) and the Nienhuis result [I21 of 
y ( d = 2 ) = $ .  The graph of (14) in figure 2 using v from (11) has a maximum near 
d = 2 as suggested above. The variation of the SAW model exponent y is contrasted 
with y (Ising) which diverges 1211 as d + 1 +  and the spherical model y8 which 
approaches infinity [32] as d + 2+ (see equation (6)). 

3. Conclusion 

We describe the statistics of self-avoiding walks in continuously variable dimension 
using information gathered from direct enumeration of SAW configurations in integer 
dimensions (d = 1,2, .  . .). The quantities (R:) and C. are computed in general 
dimension d and for arbitrary nearest-neighbour interaction. The method is very general 
and can be applied to related lattice models: spin models, percolation theory, and 
branched polymers. Baker and Benofy [25] show that the analytic continuation to 
continuous spatial dimensions employed in our lattice calculations is ‘equivalent’ to 
the dimensional continuation used in continuum field theory. This connection permits 
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meaningful comparison between our lattice model estimates for the SAW exponents y 
and U with continuum model RG &-expansion [3], Bore1 resummation [21] and Flow 
SCF computations [33-36,431. 

The Flory SCF value of uF =3/(d +2), 1 s d <4, is found to agree with our lattice 
model estimates at low dimensions while the RG &-expansion theory agrees with our 
lattice calculations better near four dimensions ( E  = O+). An approximant is introduced 
which incorporates the precisely known information in low dimensions and the RG 
predictions for E = O+. This expression seems to describe the variation of the lattice 
SAW exponents over the entire range of spatial dimensionality. 

Lattice model calculations of y in low dimensions (d S2.5) deviate significantly 
from analytic predictions based on RG &-expansion or Flory SCF theory. A consideration 
of the geometrical significance of y yields an estimate of y(d) in reasonable accord 
with lattice model computations. The lattice model values of y vary non-monotonically 
in the range 1 < d <4  and y seems to have a maximum near two dimensions. Lattice 
model estimates of the specific heat and the number of nearest-neighbour contacts of 
SAWS also exhibit maxima for d in the range of 2G d 3, as will be discussed in a 
subsequent paper focusing on free-energy related SAW properties. The property of SAWS 

being maximally ‘coiled‘ in intermediate spatial dimensions 2 s  d S 3, i.e. having 
maximal nearest-neighbour contacts, is an important qualitative characteristic of SAWS. 

Recognition of this property seems to be new. 
The maximum in the SAW exponent y for d = 2 gives some qualitative insight into 

recent calculations of y and U for SAWS on a family of Sierpinsky gasket lattices [ 17,181 
having fractal dimensions df  ranging from 1.5 to 1.75 and into recent estimates of SAW 

exponents on percolation clusters embedded in d = 2 dimensions [ 19,201. Exact calcu- 
lations of v for Sierpinsky gaskets embedded in d = 2  show that an increase in the 
fractal dimension of the lattice produces a decrease of U and an increase of y [17, IS]. 
This behaviour is expected from equation (14) and our lattice model computations for 
SAWS in variable dimension as a consequence of the y maximum if increasing dr is 
taken as qualitatively equivalent to an increase of spatial dimension d By the same 
argument we should expect that both U and y for SAWS on Menger sponge fractals in 
d = 3 should both decrease with increasing dr .  This prediction could be readily checked. 
Further, we can obtain some insight into SAWS on percolation clusters embedded in 
d = 2 where v estimates larger than for the full square lattice are obtained, while y 
estimates are nearly unchanged [19,20]. Such behaviour is expected for dimensions 
near the maximum of y (d =2). Percolation clusters in d = 2 have a fractal dimension 
near two, df=$=2 [46]. 

Bhanot el ai [47] introduce a heuristic relation between spatial dimension d and 
variable lattice fractal dimension dr by defining an ‘effective dimension’ for fractal 
lattices in terms of an average number of interacting nearest-neighbours. Adopting this 
definition and using our analytic continuation method should enable estimates to be 
made for v and y of SAWS on fractal lattices. We also expect the variable dimension 
calculations of y and U to be useful in the study of ‘dimensional reduction’, where 
the effective spatial dimension varies due to finite size constraints 1491. 

We plan to extend the present calculations to the O(m) lattice model which should 
enable non-perturbative calculation of the exponents y, v for polymers, the Ising 
model, Heisenberg model,. . . , spherical model. Various ‘non-universal’ model para- 
meters such as the critical temperature and amplitudes can be conveniently calculated 
using I/d expansion within the same framework [15,16]. An investigation of the 
interplay of spatial dimension and ‘spin dimension’ m on U and y should prove 
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interesting. Calculations are in progress for v and y for theta-point and neighbour- 
avoiding ( N A W ~ )  polymers (o + -00) in variable dimensions [50]. 
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